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An integrated study is presented on the dynamic
modelling and experimental testing of a mid-length
Foucault pendulum with the aim of confirming
insights from the literature on the reliable operation
of this device and setting markers for future research
in which the pendulum may be used for the
measurement of relativistic effects due to terrestrial
gravity. A tractable nonlinear mathematical model is
derived for the dynamics of a practical laboratory
Foucault pendulum and its performance with and
without parametric excitation, and with coupling
to long-axis torsion is investigated numerically for
different geographical locations. An experimental
pendulum is also tested, with and without parametric
excitation, and it is shown that the model closely
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predicts the general precessional performance of the pendulum, for the case of applied
parametric excitation of the length, when responding to the Newtonian rotation of the Earth.
Many of the principal inherent performance limitations of Foucault pendulums from the
literature have been confirmed and a general prescription for design is evolved, placing the
beneficial effect of principal parametric resonance of this inherently nonlinear system in a
central mitigating position, along with other assistive means of response moderation such as
excitational phase control through electromagnetic pushing, enclosure, and the minimization
of seismic and EMC noise. It is also shown, through a supporting analysis and calculation,
that although the terrestrial measurement of the Lense–Thirring (LT) precession by means
of a Foucault pendulum is certainly still within the realms of possibility, there remains a
very challenging increase in resolution capability required, in the order of 2 × 109 to be sure
of reliable detection, notwithstanding the removal of extraneous motions and interferences.
This study sets the scene for a further investigation in the very near future in which these
challenges are to be met, so that a new assault can be made on the terrestrial measurement of
LT precession.

1. Introduction
Léon Foucault was a notable French physicist, who, apart from measuring the speed of light and
discovering eddy currents during his illustrious career, proposed a striking experiment in 1851
to show visually the rotation of the Earth in a direct manner by means of a carefully suspended
long pendulum. The installation of a Foucault Pendulum requires great care and precision if one
wants to observe the real precession generated by the rotation of the Earth beneath the laboratory,
without other spurious effects intruding and ultimately dominating the motion of the pendulum.
Since its inception, the Foucault pendulum has received a large amount of attention and many
of the potential design problems, which are now known to be inherent to this system, have
been investigated in detail and a multitude of mitigating solutions have been proposed during
more than a century of international research since the time of Foucault. The aim of the work
discussed within this paper is twofold. Firstly, we propose a straightforward but representative
mathematical model of the Foucault pendulum including parametric excitation of the length in
the form of vertical support motion, and we offer a numerical study of the predicted responses
for a number of parameter cases and geographical locations. This model clearly complements
those available in the literature and also provides a useful level of transparency of derivation,
which, we believe, provides an additional aid to understanding. The other intention has been to
undertake a novel laboratory test programme, based on our interpretation of the extant literature,
and to demonstrate a pragmatic but effective level of design optimization. In order to achieve
this, we have attempted to design and build a prototype that is technically simple and also
possesses the important physical symmetries that are necessary. In addition, the pendulum is
driven into principal parametric resonance to try to minimize a very well-known difficulty
which is when the initially planar motion of the pendulum degenerates into ellipticity, this being
associated with highly undesirable frequency anisotropy effects which have been widely reported
within the experimental literature over the years. The design presented in this paper shows
that a parametrically excited Foucault pendulum of medium length can indeed be built for a
reasonable outlay and installed in an average laboratory for long-term tests initially of the classical
Earth rotation problem. Ultimately, our goal is to develop the design into a more sensitive, and
larger-scale instrument capable of resolving relativistic effects within a terrestrial laboratory in a
northerly location.

A literature review has shown that ellipticity is mainly caused by structural asymmetries either
due to defects in design, or manufacture, or both, which result in different periods of each axis
of the resulting ellipse, noting [1] that every Foucault Pendulum, no matter how carefully constructed
to avoid asymmetries in its suspension, and no matter how carefully ‘launched’ to make ellipsoidal area A
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as small as reasonably achievable will, over time, acquire an intrinsic precession Ω that can easily grow
to overwhelm the Coriolis-force-induced Foucault precession ΩF. However, to prevent this elliptical
motion of the pendulum, it has to remain as long as possible [2,3] and with the highest mass
allowed [2], noting that the original pendulum was 67 m in length and the wire was steel
which had been ‘strained somewhat beyond its elastic limit’ [2]. It is generally accepted that the
support of the pendulum must be perfectly symmetrical and a ball joint pivot or a double bifilar
suspension are preferable to a double knife edge [2]. Annealing the wire may possibly permit the
reduction in ellipticity but embrittlement follows such a treatment [2]. Torsionless wires of silk or
cotton were tested, but the use of such materials apparently does little to remove ellipticity [4]. An
electromagnetic drive using coils, coupled with a Charron ring, was shown to be effective [3,5]
for short pendulums of a few metres. The Charron ring is a fixed metallic annulus surrounding
the wire at about 1/10th of the way down from the top, making mechanical contact at large
amplitudes and in doing so encouraging the pendulum to reduce its ellipticity of response. A
specialized electromagnetic drive system was suggested by Crane [3] in which the bob carried a
small vertically orientated permanent magnet protruding from the bottom of the spherical bob
and this passed over a circular coil which gave the bob two outward and two inward pushes
per cycle. This was intended to average out any asymmetry in the drive in the case where the
amplitude was constant and where the minor diameter of the ellipse remained small compared
to the separation of the poles of the two magnets. Priest & Pechan [6] re-considered the drive
required to maintain Foucault pendulum motion and suggested an electronic timing circuit and
an updated design for the mount and collar with a drive electromagnet and feedback sense coil
to provide an indication of the proximity of the bob to the drive electromagnet, and to control the
current. Salva et al. [7] studied ellipticity due to support asymmetry and used a similar electronic
drive system to that of Crane [3] in which the bob was accelerated towards the centre. They used
an electromagnetic brake to keep the ellipticity small, but noted it still persisted to some extent.
Their system was tested with two pendulums: the first of length 2835 mm and the second of length
4970 mm. The bob was spherical of 12.5 kg and the suspension wires were, respectively, a 0.92 mm
diameter steel wire and a 0.92 mm diameter USA Diamond Brand chord piano wire.

Braginsky et al. [8] proposed an extraordinarily ambitious experiment in 1984 in which a
Foucault pendulum and an astronomical telescope, colocated at the South Pole, might be used
together to measure the angle between the principal axis of the swing and the azimuth of a
reference star such as Canopus to detect eventually the tiny relativistic effect due to the Lense–
Thirring (LT) precession, and in this way to obtain a terrestrial measurement that is directly
associated with general relativity. Their paper highlighted in considerable detail the various
dangerous sources of experimental error and the methods for circumventing them, listed as follows:
(i) Magnetic forces from the Earth’s magnetic field interacting with the natural charge on the
pendulum, noting that charge can be minimized by coating the bob and the wire, in the form of
fused quartz fibre, with a thin layer of metal, (ii) Frictional damping through frictional anisotropy,
for which a component will have to be subtracted from the results, (iii) the so-called Pippard
precession as a consequence of using a support fixed to the Earth which introduces a related
spin angular momentum whose direction changes as the pendulum swings, generating a small
precession which would also have to be subtracted from the results, (iv) Position-dependent forces
emanating from gravity gradient or even light beam pressure generating a growing ellipticity and
a possible associated precession, (v) Frequency anisotropy due to the finiteness of the amplitude of
the swing, giving rise to different periods in the orthogonal directions, and pronounced ellipticity
in the response, as previously discussed and noting that an electrostatic correction system was
also suggested for this, (vi) Seismic noise for which substantial anti-seismic isolation will be
needed. Acknowledging this particularly significant problem, Braginsky et al. [8] ingeniously
suggested the use of two pendulums attached to the same support but running out of phase and
so cancelling each other’s seismically induced precessions, (vii) Atmospheric refraction whereby
variations in the measured position of the reference star will be caused by changes in azimuthal
atmospheric refraction both near the telescope and far from it. South Pole location would
help, and effects could be reduced further by tracking two stars on opposite sides of the sky.
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They observed that a further correction could be made by two-colour refractometry, (viii)
Distortion of the telescope which manifests as any instability in the azimuthal optics due to
gravitational stresses, temperature fluctuations and ageing. They stated that the thermal stability
across the telescope would need to be maintained to around 0.01 K, (ix) Tilt of the telescope due
to the light feed mirror tilt affecting the apparent azimuthal position of the star. Feedback control
would be required to hold the light feed mirror perfectly steady. Interestingly, all these issues were
said to be technically addressable in 1984 [8], and we return to this particular application later in
the discussion of §6. Gusev et al. [9] investigated effects of viscous friction, seismic noise and
dynamic instability and modelled the anisotropy of the suspension, and then in 2002, Pascual-
Sánchez [10] returned to the Braginsky et al. proposal for the measurement of LT precession,
referring to this enhanced proposal as the TELEPENSOUTH experiment. In response to the
list of error sources proposed by Braginsky et al. [8], Pascual-Sánchez [10] suggested using a
sapphire fibre of diameter 0.1 mm and mass of 0.1 kg, a long thin and dense mass for the bob
(tungsten suggested) and a length to amplitude ratio of 40. Iorio [11] incorporated many of the
recommendations of [10] in his interesting description of a desk-bound version of the Braginsky
et al. [8] experiment.

Pippard [12] built in 1988 what seems to have been the first parametrically excited Foucault
pendulum using length excitation and showed that parametric excitation can act strongly against
ellipticity, while increasing the gain of the Foucault pendulum as a measurement device, and
that it also opposes the inherent damping of the pendulum. Pippard undertook a thorough
analysis of the role of principal parametric resonance in the Foucault pendulum and although
he was generally rather pessimistic about the probable success of using one as an instrument for
measuring relativistic precessional motions, he nevertheless made a brief mathematical statement
of the measurement of LT precession. Tungsten was recommended for the wire because of low
creep properties and Pippard derived a useful relationship between bob mass and wire diameter
for controlling the strain in tungsten in order to guarantee minimal creep over time. Reference
was also made to the design of Mastner et al. [13] in which damping was linearized through the
evacuation of a chamber surrounding the pendulum and by means of the synchronized rocking
of a conductive eddy current damper plate at a precise amplitude [12].

Salas & Flores [14] contributed importantly to Foucault pendulum instrumentation in 2004 by
proposing an imaging system which would offer the following functionality (i) detection of the
bob under changes in the background scenario, (ii) computation of the bob’s trajectory by fitting
an ellipse to the set of observed positions, and (iii) estimation of the noise in the predominant
direction of motion and reduction using a Kalman filter. Interestingly, their pendulum was
deliberately designed to be of relatively low performance, with no special attention to be paid
to the collar and pivoting system, so elliptical motion was expected to be a certainty and
because of this, the system provided a particularly compelling test-bed for their compensatory
instrumentation.

Stanovnik [15] quite correctly pointed out that two-dimensional modelling cannot directly
account for the vertical component of bob motion, which grows with swing amplitude, and also
when taking the elasticity of the string into account should that be significant in the design to
be studied. In such cases, the use of a three-dimensional model was advocated in order to build
in string dilatation due to bob mass and an additional elastic variation in string length during
motion. According to this author, the long-term precession period of a two-dimensional Foucault
pendulum model may not necessarily equate to the rotation period of the Earth as the precession
period of a Foucault pendulum can be dependent on both the rotation of the Earth and the elastic
properties of the suspension string, thus requiring a three-dimensional nonlinear dynamic model.
The consequence for an experimental system is that the string elasticity can be significant, and
needs to be properly considered.

In the important recent paper by Schumacher & Tarbet [1], it was claimed that ellipsoidal
precession can be removed electromagnetically and that the method that they proposed for this
would be insensitive to the size and direction of the perturbation forces leading to ellipsoidal
motion. They used a short 3 m pendulum that could be ‘pushed’ in a controllable manner to
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make the Foucault precession dominant. They emphasized that although the longer Foucault
pendulum will generally show less susceptibility to the ellipticity problems that submerge the
desired effect, this geometrical feature alone will not eradicate it completely. Their starting point
was the desirability of building shorter Foucault pendulums in which the accrued ellipsoidal
motion might be minimized, and then to compensate effectively for the irreducible amount of
ellipsoidal precession that remains. Their method used the idea that pushing the bob away from
the origin as it passes, rather than either pulling it in or alternately pulling and pushing it,
acts in a way that counters the unwanted intrinsic ellipsoidal procession. They explained that
when the pendulum is at its extremum (at x = ±a, where a is the semi-major axis), its motion
would be entirely transverse with momentum mẏ being maximized. From this, they showed that
preferential damping of this component of the motion would reduce the unwanted ellipsoidal
excursions, and they noted that the mechanical Charron ring is one simple way of achieving
this. They proposed a more modern eddy current damping method, but maintained that none
of these methods will stop ellipsoidal motion completely, hence the need for their additional
active approach. The principal contribution of [1] is a special electromagnetic drive that develops
a magnetic push not only to compensate for the dissipative losses but also for the unwanted
ellipsoidal precession. The authors stated four physical aspects of the design that can lead
to ellipsoidal motion: (i) significant internal stresses or other imperfections in the wire of the
pendulum, (ii) less than perfectly symmetrical suspension of the wire at its upper end, (iii) nearby
ferrous objects that result in an asymmetric force on the drive electromagnet, (iv) a driving coil
that is not sufficiently levelled and centred under the pendulum. They concluded that the last
three can all be designed out, or minimized by good design, but the first cannot necessarily
be eradicated. Their solution was to apply a separate perturbative force to nullify the intrinsic
ellipticity. Schumacher & Tarbet [1] analysed their results in detail and the paper confirmed that
their pushing-only solution worked very effectively.

Lacsny et al. [16] described a relatively simple experiment in which a short Foucault pendulum
of only 2.85 m was used with a spark generator system by which the movement of the pendulum
could be directly recorded by a spark burned trace on paper. The main contribution of this paper,
other than the spark-burn motion detector, is the design of the anchorage. This used a hardened
steel ball resting on a perfectly level (adjustable) polished aluminium plate that was cantilevered
out from a solid wall support. The steel ball was at the end of a bar attached to a brass ring, and
the pendulum was attached to the ring. The cylindrical bob was deflected from equilibrium to
give the required displacement initial conditions and held there with a thread. This was burned
at the point when the pendulum was to be set in motion.

A very recent paper on Foucault pendulum design by Plewes [17] discussed the possibilities
for magnetic monitoring of a very short Foucault pendulum of less than 1 m in length. The
author also listed the possible sources of inevitable ellipticity over repeated oscillations, as
follows: radial asymmetry of system components, non-ideal alignment or levelling of components
and non-uniform stresses in the pendulum wire and suspension. The author stated that this
erroneous precession can operate either to negate or augment the apparent Foucault precession from the
Earth and therefore introduce significant errors. Plewes [17] pointed out that both Pippard [12] and
Olsson [18] studied ellipticity and that they showed the precession rate from this mechanism
is well approximated by, Ωerror = 3

√
gθb/8l3/2, where θ is the pendulum swing angle (with

respect to the local vertical), b is the minor axis amplitude due to the ellipticity and l is the
pendulum length. This is certainly reasonable for small θ . Short pendulums are said to be
significantly more susceptible to this form of motion, now frequently referred to as Pippard
precession. Relationships between minor axis displacement and target Pippard precession were
given. Physical properties were also suggested for a practical design for a very short Foucault
pendulum, notably the use of a pin vice for attachment, and spring-tempered, phosphate-coated,
carbon steel wire of 0.812 mm diameter. Mounting of the pin vice was considered to be critical,
and in particular accurate levelling. A neodymium permanent magnet was recommended within
the bob for use with a circular detector coil and concentric drive coil. The drive coil should
be very carefully designed in order to reduce any notably asymmetry in its field. A precision
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magnetometer was recommended for measurement of precession and a circuit diagram was given
for the timing and measurement electronics. The author also used a Charron ring, recommended
as a supplementary device for mitigating ellipticity in short pendula.

Considering all these previous findings, it was decided that a new laboratory test pendulum
should be built, principally by taking the following fundamental design criteria into account.

The literature is consistent that long pendulums with correspondingly high bob masses are
less susceptible to ellipticity effects due to structural asymmetry than short systems with light
bobs, so the longest pendulum possible within the available laboratory space was the first design
decision. Suspension and pivoting has repeatedly been shown to be absolutely crucial and so
the inherent symmetry and the simplicity of a high-performance spherical ball joint was chosen
over bespoke needle or ball and plate joints, intricate gimbals, and complicated fluid or magnetic
bearings. The literature has been very clear that ellipticity can be minimized by means of an
appropriate electromagnetic ‘pusher’ system combined with symmetrical design and the use of
quality materials, but parametric excitation is regarded as an effective supplementary choice
because of the extremely strong response of nonlinear systems when subjected to principal
parametric resonance [19,20]. It should be noted that this response is only actually bounded
either mathematically or physically by the presence of nonlinearities within the system [20],
and that the Foucault pendulum is suitably nonlinear. Parametric resonance has been found to
remove ellipticity, overcome frictional and aerodynamic damping (if the parametric excitation
amplitude is high enough and the resonance is strong) and to maintain a maximized response
swing amplitude [12,20,21]. It is also very likely to remove the smaller effects of position-
dependent force-induced precessions. In addition, the pendulum bob should not be of a shape
that will exacerbate unwanted rocking, wobble, or torsional motions, and previous findings
recommend a long, thin, cylindrical bob made from tungsten to meet these requirements. The
material composition and geometry of the wire is highly critical and a conductive material
is preferable in order to remove the unwanted electrostatic charge, and the wire should also
be as longitudinally stiff as possible and generally substantial enough not to creep over time.
As a consequence, an experimental design has been synthesized and this is discussed in
detail in §4.

The novelty within the research presented here includes the derivation of a tractable
generalized model for the terrestrial Foucault pendulum which includes nonlinear aerodynamic
damping, parametric excitation and long-axis torsion, followed by a reasonably extensive
numerical analysis showing both the capabilities and the shortcomings of the model, including
a geographical context. In addition to this, a new experimental design for a mid-length
Foucault pendulum is discussed in some detail, with literature contextualization, and tests of
the unforced and parametrically excited pendulum are presented comparatively and critically.
Finally, the paper concludes by re-visiting previous proposals for the terrestrial measurement of
the gravitational LT precession, and offers a comparative re-calculation of that quantity with key
results from the literature.

2. Mathematical model
In order to derive a mathematical model for the Newtonian dynamics of a terrestrial Foucault
pendulum, we start by introducing a fundamental global frame of reference with its origin at
the centre of the Earth, EXYZ, and then we identify a second frame of reference grounded at the
location of the pendulum, defined by pxyz, as shown in figure 1. The Earth rotates about axis EZ,
for which we define the associated unit vector ēZ, and we denote the angular velocity of the Earth
by Ω̄ . The latitude of the pendulum location is given by φ. The unit vectors for the local frame
are ēx, ēy and ēz, and these can be identified in figure 2. We note that the plane defined by pyz
is considered to be coplanar with the plane defined by EYZ. The pendulum is of length l, where
this is taken from the point of emergence of the wire from the pivot at some point on pz to the
centre of the bob at B. It swings through angle α, and coordinates x and y are therefore defined by
projecting down from B to A, where A is on the pxy plane, all as shown in figure 2.
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Figure 1. Earth-centred frame of reference EXYZ and local frame pxyz, showing pendulum deflected throughα and located at
a latitude defined byφ. (Online version in colour.)
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Figure 2. Local frame of reference pxyz rotated round for clarity of view, showing local Cartesian coordinates x and y. (Online
version in colour.)

The derivation of the equations of motion is summarized in detail in the electronic
supplementary material, file ESM1. The equations are as follows:

ẍ + η|ẋ|ẋ − 2ẏΩ sin φ − xΩ2 + gx

l
√

1 − ((x2 + y2)/l2)
= 0 (2.1)

and
ÿ + η|ẏ|ẏ + 2ẋΩ sin φ − yΩ2 sin2 φ + rΩ2 sin φ cos φ + gy

l
√

1 − ((x2 + y2)/l2)
= 0, (2.2)

where the quantity η is the damping coefficient, defined in the electronic supplementary material.
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(a) Parametric excitation
As can be seen from equations (2.1) and (2.2), the system requires initial conditions to excite
a transient response, but it is also perfectly possible to include a simple form of parametric
excitation by adding a small modulation to the pendulum length in the following form, where
the originally constant pendulum length l now becomes l(t)

l(t) = l0 + l1Cos(ω1t), (2.3)

and where principal parametric resonance is defined by

ω1 = 2ωn + εσ . (2.4)

The frequency ωn is the undamped natural frequency of free vibration for the pendulum of
nominal length l0 and εσ defines a small latitude, or detuning, around the perfectly resonant
point. Given that a parametric resonance will generally destabilize a linear system from its null
stability then appropriate combinations of excitation frequency ω1 (or detuning εσ ) and excitation
amplitude l1 can push such a system through metastability and into the theoretically unstable
zone where the response magnitude of a linear system is unbounded. In the case of a nonlinear
system, as in the Foucault pendulum, the nonlinearities bound the response, so the system is
not definitionally unstable and instead it responds vigorously up to a limit that is imposed
by the dominant nonlinearity. The net effect of this is that as long as εσ is very small then
the principal parametric resonance will strongly amplify and maintain the transient response
of the pendulum. The stability of a parametrically excited pendulum depends on whether or
not it is linear or nonlinear. Obviously, any real-world system will be nonlinear to some extent
but a close-to-linear parametrically excited system could be represented by the Mathieu–Hill
form of differential equation, for which the solution at principal parametric resonance will be
unbounded. This is very often depicted by means of zones of stability and instability defined
by the so-called transition curve or the Strutt–Ince diagram, in which excitation amplitude
and frequency are plotted, and where the curve depicts metastability, with transitions across it
either to amplitude/frequency pairs that define stable (null) solutions or alternatively within the
zone where the amplitude/frequency values define unbounded unstable solutions. The effect of
damping such an oscillator is to pull the ‘nose’ of the transition curve up a little more from the
frequency axis, so more excitation amplitude is required to overcome the damping so that the
system can transition into instability. In the case of a nonlinear system, the nonlinearity bounds
the instability to a finite value, so the ‘unstable’ response is actually a very large amplitude
bounded value. If a notionally cubic nonlinearity dominates the parametrically excited system
then there could be three bounded ‘instabilities’, with the system tending to gravitate to the upper
one [20]. Basins of attraction could be calculated to home in exactly on specific cases. In the work
reported here, the Foucault pendulum is nonlinear and so softening cubics naturally emerge. The
numerical results in figure 3 show the most stable (upper) bounded solutions for the pendulum. A
well-designed Foucault pendulum will tend to have a high Q factor, and so the transient response
should naturally persist for a long time. The benefits of using parametric excitation are threefold
in the Foucault pendulum: (i) it amplifies the magnitude of the response and the potential benefits
of this are explored further in the discussion in §6, (ii) it overcomes the natural decay due
to damping, noting that we are modelling this as an aerodynamic effect here, to maintain the
response at a high constant amplitude—as limited by the dominant nonlinearities, and finally
(iii) it assists in the minimization of ellipticity by driving the pendulum to maintain the amplified
form of the response starting from the chosen initial conditions. Using equations (2.1)–(2.4)
inclusive allows us to examine initially the response of the Foucault pendulum to a parametric
excitation of the length, as shown in figure 3. The amplification of the response from the initial
displacement conditions (defined by the red dot) can be clearly seen. The nominal length of the
pendulum l0 is 8 m and the amplitude of the parametric length excitation l1 is 0.075 m. The local
acceleration due to gravity at Glasgow g is 9.8156 m s−2 and the angular rate of the Earth Ω is
7.2921150 × 10−5 rad s–1. The latitude of Glasgow φ is 0.9750 rad, and the local radius of the Earth,
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Figure 3. Response of the Foucault pendulum to principal parametric excitation with zero detuning and at 0.075 m peak
amplitude for a nominal pendulum length of 8 m and a bobmass 2 kg, located in Glasgow (see text above). The red dot denotes
the start position, the blue dot the end position. Axes scaled in metres. (Online version in colour.)

0 2000 4000 6000 8000 10 000 12 000 14 000

2.14 × 10–6

2.16 × 10–6

2.18 × 10–6

2.20 × 10–6

2.22 × 10–6

2.24 × 10–6

time

q(
t)

Figure 4. Time-domain response of the Foucault pendulum with a 2.54 mm diameter tungsten wire and in pure torsion for
the data given in the electronic supplementary material (and also under the same conditions of principal parametric excitation
with zero detuning and at 0.075 m peak amplitude, nominal pendulum length 8 m, bob mass 2 kg, located in Glasgow). θ (t) is
in radians and t is in seconds. (Online version in colour.)

again at Glasgow, r is 6363.18 × 103 m. The mass of the bob M is 2 kg and the radius of the bob
Rbob is 0.01 m. The density of the air surrounding the pendulum ρ is 1.189 kg m–3 and the drag
coefficient for the cylindrical bob and locally turbulent air flow CD is 1.5. Initial conditions for
the pendulum are arbitrarily assumed as x0 = 0.1 m, ẋ0 = 0 ms−1, y0 = 0.018 m, ẏ0 = 0 ms−1. The
pendulum is found to be sensitive to initial displacement conditions only in that they describe
a physical starting point, and it is relatively insensitive to the initial velocity conditions, quickly
returning to the same time responses from whatever initial velocity conditions are imposed. The
integration time chosen for the plots of figures 3–7 inclusive is tend = 14 400 s (4 h), and this is
discussed in more detail in §3 as it is shown there to be close to the maximum acceptable limit for
numerical integration accuracy when using the MATHEMATICA NDSolve integration routines for
this particular series of calculations. Sample code is given in electronic supplementary material.
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0.000216

0.000218

0.000220

0.000222

0.000224

Figure 5. Time-domain response of the Foucault pendulum with a 2.54 mm diameter tungsten wire and in pure torsion for
CB = 0.3 N m s, the rest of the data as for figure 4 (and also under the same conditions of principal parametric excitation with
zero detuning and at 0.075 m peak amplitude, nominal pendulum length 8 m, bob mass 2 kg, located in Glasgow). θ (t) is in
radians and t is in seconds. (Online version in colour.)

0 2000 4000 6000 8000 10 000 12 000 14 000
time

q(
t)

0.00041

0.00042

0.00043

0.00044

Figure 6. Time-domain response of the Foucault pendulumwith a 0.813 mmdiameter tempered steel wire and in pure torsion
for CB = 0.003 N m s, the rest of the data as for figures 4 and 5 (and also under the same conditions of principal parametric
excitation with zero detuning and at 0.075 m peak amplitude, nominal pendulum length 8 m, bob mass 2 kg, located in
Glasgow). θ (t) is in radians and t is in seconds. (Online version in colour.)

file ESM2. Accuracy control was implemented as carefully as possible, consistent with eventual
convergence time, by setting four principal internal control options for NDSolve stringently:
MaxSteps → ∞, AccuracyGoal → 20, PrecisionGoal → 20 and WorkingPrecision → 55. These choices
were based on previous experience with modelling strongly nonlinear systems.

It is also interesting to note that more than one simultaneous resonance could be introduced,
potentially increasing the amplification factor even further, and this option is to be vigorously
explored in the next phase of the research [22,23].

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 M

ar
ch

 2
02

4 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190680

..........................................................

0 2000 4000 6000 8000 10 000 12 000 14 000
time
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t)

0.041

0.042
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Figure 7. Time-domain response of the Foucault pendulumwith a 0.813 mm diameter tempered steel wire and in pure torsion
for CB = 0.3 N m s, the rest of the data as for figures 4–6 (and also under the same conditions of principal parametric excitation
with zero detuning and at 0.075 m peak amplitude, nominal pendulum length 8 m, bob mass 2 kg, located in Glasgow). θ (t) is
in radians and t is in seconds. (Online version in colour.)

(b) Coupling with pure torsional motion
This analysis has not yet taken into account any possible coupling with unwanted extraneous
pendulum modes that might be physically excitable, and because of the design adopted,
discussed in §4, the most important of these, over time, is likely to be the pure torsion mode of the
pendulum. In principle, such a motion could be excited by a transfer of the small torque across
the pivot due to the rotation of the Earth, even in the case of a high-quality spherical bearing,
a sophisticated gimballed pivot design, or a precision fluid bearing. This torque would be due
to frictional work done within the bearing and proportional to the angular velocity across the
joint. An additional governing equation for pure torsional motion is also derived in the associated
electronic supplementary material.

The oscillatory torsional response against time, given in figure 4, shows a miniscule peak
amplitude, and a tiny DC offset is also predicted, both of which are to be expected given that
the excitation is a constant modulated by the parametric excitation of the length l. Increasing
the spherical rotating joint’s damping friction value to CB = 0.3 N m s leads to the time response
shown in figure 5, all other data unchanged. It should be noted that CB = 0.3 N m s is an
unrealistically high frictional damping value for the spherical rotation joint and yet the torque
transfer is still only sufficient to induce a dc offset of around 0.0002 rad, which equates to 0.0114°,
for this tungsten wire example. Returning to the manufacturer’s stated damping friction of CB =
0.003 N m s then the dc offset reduces to 0.000002 rad, or 0.000114°, as in figure 4, which is 100
times smaller than the value for 0.3 N m s used in figure 5, implying a linear relationship between
these two quantities.

If the wire material is changed to tempered steel and the diameter is also reduced notably, so
that SG = 79 × 109 Pa and dwire = 0.000813 m, then the torsional response increases in terms of DC
offset and amplitude, with the case for CB = 0.003 N m s given in figure 6 and for CB = 0.3 N m s in
figure 7.

From the data in figure 6, it can be seen that the DC offset is 0.000426 rad, or 0.0244°, and the
peak-to-peak amplitude is approximately 0.000013 rad, or 0.00074°. In the case of the hypothetical
case of figure 7 the DC offset is 0.0426 rad, or 2.4408°, and the peak-to-peak amplitude is
approximately 0.0013 rad, or 0.07448°. The conclusion from this is that any pure torsional motion
due to torque transfer across the spherical rotating joint will be inconsequentially small in the case
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of the 2.54 mm diameter tungsten wire. However, if a thinner tempered steel wire of 0.813 mm
diameter is used instead then the predicted DC offset approaches 0.025° (figure 6) and it is then
just within the bounds of possibility that this could start to exacerbate unwanted couplings over
time. In the case of the (unrealistically) high value for CB, explored in figure 7, then this possibility
would become much more concerning. Overall, it is safe to conclude that for the design data
discussed in §4, the pure torsional mode is unlikely to be excited as a result of torque transfer
across the spherical rotating joint due to laboratory rotation, and future design work will ensure
that this feature continues to be prioritized.

3. Theoretical results for different locations
As shown in figure 3, the analytical model predicts that the Foucault pendulum responds to the
rotation of the Earth and the parametric excitation of the length, as one might expect, for the case
of a pendulum of a nominal length of 8 m. This analysis can be extended for the same pendulum
operated at latitudes from the North Pole down to the Equator and on to the South Pole. The
specific effect of latitude on the precession of the pendulum is summarized in table 1 for 11
different locations over a maximum allowable integration time of 14 400 s (4 h) and for the same
initial conditions as in figure 3. Assumptions include using specific locational accelerations due
to gravity and radii of the Earth, and taking the constant angular rate of the Earth Ω about the
polar axis. The precession αtend is calculated from

αtend = 57.2958
(

arctan
(∣∣∣∣y0 − ycent

x0

∣∣∣∣
)

+ arctan
(∣∣∣∣ytend − ycent

xtend

∣∣∣∣
))

, (3.1)

where αtend is given here in degrees, x0 and y0 are the initial displacement points at t = 0
(associated with the red dot in figure 3), xtend and ytend are the final displacement points at t = tend
(associated with the blue dot in figure 3) and ycent is the y value when x = 0. Equation (3.1) was
computed automatically at the end of each numerical integration in order to obtain the aggregated
precession αtend over the chosen integration time. This precession was then linearly extrapolated
over 24 h to give an approximate daily precession in degrees, as follows:

α24h =
(

86 400
tend

)
αtend. (3.2)

These two quantities are stated in columns 6 and 7 in table 1 for the 11 locations chosen. The
final column gives the calculated rates of precession for tend = 14 400 s at the 11 chosen locations.

The predicted precessions against location given in the sixth column of table 1 for the
integration time of 14 400 s (4 h) are proportionally extrapolated to 24 h, using equation (3.2), as
shown in the penultimate column, and it can be seen that this approximation shows the predicted
precession magnitudes of just over 360° at the poles. This is clearly phenomenologically correct,
although the accuracy of the precession is compromised by the simple linear extrapolation of the
responses of this nonlinear system.

Plotting the rate of precession due to rotation of the Earth in figure 8 (from the final column of
table 1) against latitude shows the distribution of this quantity from north to south, illustrating
that it is zero at the equator and maximized at the poles. We can plot the acceleration due to
gravity against latitude in figure 9 [24], showing the profile from pole to pole. As a further insight
into the effect of location on the radius of the Earth, this quantity is plotted as a function of
latitude in figure 10 [25]. Finally, the extrapolated daily precession of the Foucault pendulum
due to Earth’s rotation against latitude (penultimate column of table 1) is shown graphically in
figure 11.

This initial theoretical investigation confirms that the mathematical model of equations (2.1)
through to (2.4) provides predictions of the dynamic performance of the Foucault pendulum
consistent with expectations, for various locations, and also shows that the effect of parametric
excitation, in the form of length modulation, is highly significant, leading to greatly enhanced
response amplitude. The numerical integrations in the previous examples were all performed
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Figure 8. Rate of precession due to rotation of Earth, as a function of latitude. (Online version in colour.)
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Figure 9. Acceleration due to gravity as a function of latitude. (Online version in colour.)

over an integration time of 14 400 s. The next part of this analysis examines comparatively the
same cases over reduced run times of 3600 s and 900 s, respectively, and for pendulums of different
length. The numerical results given in figure 12 are for pendulums of discrete nominal lengths
from 3.5 to 8 m, for three different values of tend, and the parametric excitation amplitude l1
set to 0.010l0. The aggregated precessions αtend should be constant for each integration time
and, therefore, independent of the length of the pendulum, and although this is broadly the
case, there are notable discrepancies as the integration time is increased to 14 400 s, particularly
for the shorter pendulum lengths. It can be seen that for tend = 900 s (grey plot line with triangles),
the independence of αtend on length is confirmed and all lengths in the range chosen perform as
expected. This is much the same when tend is increased to 3600 s (orange plot line with squares)
with only very slightly anomalous behaviour predicted for l0 between 4 and 5 m. However,
when tend is increased to 14 400 s (blue plot line with diamonds) then the accuracy of prediction
for αtend is seen to have reached its limit, and further numerical tests have unequivocally
confirmed that tend values much above 14 400 s give unreliable predictions for the dynamics of the
pendulum, irrespective of length. So, tend = 14 400 s has been considered as a strict upper limit on
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Figure 10. Radius of the Earth as a function of latitude (in degrees), showing the oblateness of the Earth. (Online version in
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Figure 11. Total daily precession due to rotation of the Earth as a function of latitude (in degrees). (Online version in colour.)

acceptable integration time for this study. These trends are virtually identical for two other levels
of parametric excitation examined, l1 = 0.0075l0 and l1 = 0.005l0, respectively, indicating that the
effect of the parametric excitation is as expected, as long as the magnitude of the excitation and
the excitation frequency are both maintaining the system within the threshold stability boundary
of the region defining principal parametric resonance [19,20]. Values of l1lower than 0.005l0 return
back to the threshold stability boundary for this system, and once this is crossed then the effect of
the parametric excitation quickly disappears.

This study was further extended for pendulums for which 3.5 ≤ l0 ≤ 80 m, figure 13, and it is
interesting to note from these results that the predicted precessions undergo a qualitative change
as nominal pendulum length l0 increases from around 8 m for tend = 900 s and tend = 14 400 s,
but not for tend = 3600 s. Further analysis is required to pin down the numerical relationships
behind this effect more precisely, so the integration time of tend = 3600 s would appear to offer
a conservative and reliable basis for the numerical analysis of practically realizable designs
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line and squares) and tend = 900 s (grey line and triangles) with x0 = 0.5 m, y0 = 0 m, ẋ0 = ẏ0 = 0 ms−1, and peak
parametric excitation amplitude defined by l1 = 0.01l0, plotted as a function of nominal pendulum length l0 in metres, for
3.5≤ l0 ≤ 8.0 m. (Online version in colour.)
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(Online version in colour.)

based around the data discussed so far. This numerical analysis could be further supported
by a perturbation analysis using, for example, the perturbation method of multiple scales, on
the understanding that the equations would be ordered systematically so that the terms in the
differential equations appear at the correct order of perturbation. This could be achieved formally
by scaling η, Ω and l by means of the notionally small perturbation parameter ε, and usually by
non-dimensionalization of the clock time. The generalized coordinates would be approximated
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by power series of the form x(τ ;ε) = x0(T0, T1) + εx1(T0, T1) + . . . and y(τ ;ε) = y0(T0, T1) + εy1(T0,
T1) + . . . , where T0 and T1 are successively slower independent timescales, and the two series
would be truncated after O(ε1) or possibly after O(ε2) should there be weaker but physically
important nonlinearities that the scheme sets to O(ε2). The process is necessarily considerably
more complicated if the perturbation analysis is continued to O(ε2) [26]. Such a perturbation
analysis has not been included in this work to date as the main emphasis has been on a general
discussion of the Foucault pendulum, the literature on experimental designs, and a report of our
preliminary experiment and some proposals for the next stage of development. It remains to be
implemented in a future investigation.

4. Experimental design and procedure
The design criteria for the experiment were discussed in the context of the literature in §1 and can
be summarized as follows:

1. minimized longitudinal elasticity to mitigate the control of creep over time,
2. maximized symmetry of the upper end suspension,
3. electrically conductive wire to avoid the build-up of static electric charge,
4. homogeneous wire material with minimized residual internal stresses,
5. the longest possible pendulum wire and a long cylindrical bob, preferably both of

tungsten,
6. parametric excitation of the length.

Pippard [12] showed that creep could generally be minimized, ideally for tungsten, for the
longer pendulum if the wire diameter relates to the bob mass as follows:

dwire ≥ 1.8M1/2, (4.1)

where the bob mass M is in kg and the wire diameter dwire is in mm. So, for a bob mass of 2 kg,
the corresponding wire diameter should be at least 2.54 mm to guarantee the avoidance of creep.
Keeping with the notion of a cylindrical tungsten bob of 2 cm in diameter and M = 2 kg then the
length required, if made of tungsten, is 32.7 cm. Tungsten parts were duly procured for the wire
and the bob to these dimensions. It was attempted to meet the requirement for a symmetrical
upper suspension system by installing a specialized spherical rotating joint (Hephaist SRJ006C).
The parametric excitation was provided by a servo-motor-driven linear ball-screw drive (Myostat
RD-55 T servo actuator with 12 mm pitch, and 100 mm stroke, and CM1-C-23L20D motor) with
a bespoke cylindrical adaptor machined in aluminium alloy to connect the linear drive motor
actuator shaft to the spherical rotating joint and then a further cylindrical aluminium adaptor to
go from the lower end of the spherical rotating joint to the wire itself. This assembly was intended
to provide as symmetrical a suspension as possible; see electronic supplementary material, ESM3
for details (showing the original installation using the tungsten wire). The attachment of the
wire to the lower adaptor was carefully considered and it was decided to embed the wire into
a 2 cm deep hole in the adaptor, with control of the tolerancing of the hole diameter to provide
a suitable location for the use of a very-high-strength epoxy resin adhesive. This proved to
be a workable technique and was also used at the lower end of the pendulum for the bob
attachment point. On this basis all six design criteria were addressed to a fair extent. A high-
roofed laboratory was made available for the duration of the experiment so that the pendulum
length could comfortably just exceed 4.5 m. Problems quickly arose with the tungsten wire during
installation as the necessities of packaging for transportation of such a long stiff wire introduced
severe internal residual stresses which created a static curvature of the wire over the length.
This proved almost impossible to eradicate, despite the use of controlled static tension and heat.
This material ultimately had to be abandoned in favour of a high-quality tempered steel piano
wire of a significantly smaller diameter (0.813 mm) in order to guarantee absolute straightness of
the pendulum when suspended, thus not fulfilling Pippard’s creep criterion of equation (4.1)
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Figure 14. Schematic of laser rangefinder layout for the determination of ellipticity. Laser rangefinders L1–4 are located on the
x and y measurement datum lines to measure distances x1–4 and y1–4. The initial swing plane is given by the blue line, length
2A, and the final swing plane is shown by the orange line, length 2B. Note also that the cross-over point of the swing does not
necessarily occur at the origin of the axes. (Online version in colour.)

[12]. New upper and lower adaptors were machined to provide the epoxied attachments for
this particular wire diameter. The bob was manufactured from 97% tungsten, and this was
successfully used as originally intended. The linear drive unit for the parametric excitation of
the suspension assembly was vertically mounted onto a substantial cantilevered channel section,
with the actuator protruding downwards through a hole in the section, and the other end of the
channel was welded to the upper beam of a large pre-existing structure within the laboratory in
order to get the required pendulum length, see electronic supplementary material, file ESM3,
figure E3.1 for details. This provided a massive support for the pendulum installation. The
system was designed so that the bottom face of the bob was to be 10 cm above the surface of
a specially manufactured table, at actuator mid-stroke. The table was used as a perfectly flat area
for defining compass-oriented reference axes and also for the location of the laser measurement
instrumentation.

The linear actuator servo-motor was driven by a power amplifier located adjacent to the
actuator, shown in electronic supplementary material, file ESM3, figure E3.2, and this was driven
through a 10 m active repeater USB cable communicating with a host computer on the ground
running bespoke software for the control of the actuator amplitude and frequency. The motion
of the pendulum was tracked using four laser rangefinders (Magnusson IM25 1 mW 635 nm
EN60825-1.2014) fitted to precision bench-top tripods and located on the reference table below
the pendulum as shown schematically in figure 14, and in practice in electronic supplementary
material, file ESM3, figure E3.3.

The principal measurement concerned the ellipticity of the response, and the calculation to test
for this was based on the following approach. The rangefinders were initially set up to measure
the differences between the local x-scale positions of the peak excursions of the pendulum at a
location on the wire immediately above the bob, (x1 – x2), and the differences between the local
y-scale positions of the same peak excursions, (y1 – y2), and then these measurements were
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repeated by moving the lasers along their calibration lines, after a suitable period of time, to
give (x3 – x4) and (y3 – y4). The relationships given in equations (4.2) and (4.3) can then be derived

(x1 − x2)2 + (y1 − y2)2 = (2A)2 (4.2)

and

(x3 − x4)2 + (y3 − y4)2 = (2B)2. (4.3)

There will be no indicated development of ellipticity for the parametrically excited case over
the time period if A = B, but if A �= B then there will be measurable ellipticity for which the length
of the semi-major axis is given by B. For the unforced case, the condition A �= B also captures
the transient decay of the pendulum’s response from the initial conditions over time, and in
that case, it is not an absolute indicator of ellipticity, and we return to this in §5a. In order to
obtain as much measurement accuracy as possible the four laser tripods were set up in exactly
the same manner to provide the measurement system shown in figure 14 and using their in-
built bubble levels so that the laser light beams were all set parallel to the table surface. Both
pairs of tripods were arranged so that the front two feet of each tripod lay exactly on the x and
y measurement datum lines, respectively. A precision square was set up at arbitrary but well-
separated reflection test points on the y and x axes, respectively, see figure 14, and initialization
measurements from lasers L1 and L2 were recorded, i.e. x10 and x20, noting that they were very
slightly different due to the set-up differences between each laser in the two pairs. Using x10
as a reference measurement for laser L1 allowed a suitable correction to be made for L2 so
that the actual experimental measurements x1 and x2 could then be correctly recorded, to an
aggregated accuracy of ± 1 mm. The same procedure was followed for lasers L3 and L4 to enable
measurements y1 and y2 to be made. The two pairs of laser tripods were then carefully moved
along the x and y measurement datum lines in order to take the second set of readings, x3, x4,
y3, y4. The results of this test are summarized in §5a,b for the parametrically excited case. The
pendulum itself was set up as follows. The length of the pendulum from the centre of rotation of
the spherical joint to halfway down the bob was measured using a laser rangefinder to be 4685.5 ±
0.5 mm (taking into account the accuracy of the digital rangefinder). Calculating the natural
frequency of free undamped vibration from fn = (1/2π )

√
g/l0 = (1/2π )

√
9.8156/(4.6855 ± 0.0005)

Hz leads to 0.230314407≤ fn ≤ 0.230338986 Hz. The average of these two calculated values is
therefore fn = 0.230326696 Hz (calculated to 9 dp). The pendulum oscillations were observed for
20 swings, and then this observation was repeated, and the overall average period across the
two sets of measurements was found to be T = 4.2260 s (measured and calculated to 4 dp). This
gave the damped natural frequency of free vibration in the fundamental pendulum mode as
f n = 0.2366 Hz (also to 4 dp). The difference between the calculated undamped natural frequency
and the measured damped natural frequency is 0.006273304 Hz, recalling the stated difference
in accuracy between the two values. In percentage terms, this is approximately 2.72% and
in practice, this discrepancy would certainly account for the very small but finite damping
inherent in the system. The linear drive actuator was selected to be capable of exciting the
pendulum into principal parametric resonance, for which the drive frequency and the natural
frequency of the pendulum mode could be related as follows: Ω = 2fn + εσ , where εσ is a small
detuning parameter. This required that Ω = 0.4732 Hz, for perfect tuning, and the servo-motor
drive software was programmed to generate this frequency exactly. The peak amplitude of the
parametric excitation l1 had to be ≥ 0.01l0 to be absolutely sure of driving the system into this
resonance. This means that l1 ≥ 46.855 mm, and so the peak to peak amplitude, 2l1 ≥ 93.71 mm.
The linear drive actuator was supplied as fully rated for 100 mm peak-to-peak amplitude, and
was, therefore, run at 100 mm peak-to-peak with Ω = 0.4732 Hz for the parametric excitations
tests, summarized in §5b. It is well known that any pendulum which is gravitationally restored is
inherently nonlinear [20], with a softening characteristic and three possible solutions (lower and
upper solutions stable, middle solution unstable); therefore, the initial displacement condition
has to be large enough to allow the parametric resonance to build the response up to the stable
upper solution, given that the lower stable solution will be of very small amplitude. Typically,
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there can be slow phase interactions within nonlinear parametrically excited systems, which are
accentuated when the damping is very low, as it is here [20], noting that the lowest obtained
logarithmic decrement value was taken for damping in situ. So, if the pendulum is started in such
a way that there is a non-zero phase shift between the excitation and the initialized pendulum
motion then there will be considerable beating in the response, taking the form of a low-frequency
modulation envelope that decays slowly. It was found to be possible to minimize this effect
by launching the pendulum so that the phase shift between the parametric excitation and the
initialized motion was as close to zero as possible. Trial and error launch tests by hand showed
that this was perfectly possible for small pendulum motions (up to 150 mm peak) but much more
difficult to achieve in any consistent manner for significantly larger initial displacements. This
underpins the need for a mechanized launch system for a future instrumented pendulum in order
to provide any chosen initial displacement without introducing any form of additional unwanted
motion. To explore this a little further, a series of subjective hand-launch tests was carried out. In
the case of the unforced pendulum, it was found that any perceptible initial ellipticity would grow
notably with time and would soon completely mask the required planar motion. In the case of this
installation, it took around 15 min for the motion to degenerate into an easily recognizable ellipse.
This situation was always notably worse when there were observable levels of ‘bob-wobble’, long-
axis torsion, or both present at the launch. Interestingly, it was also noted that the major axis of the
response ellipse of the unforced pendulum would orient itself at a shallow re-orientation angle
from either the west–east or south–north (local x and y) axis lines when launched exactly along
either of those axes in a positive direction, and we return to this observation in §§5a and 6, where
this angle is defined as γ . The parametric excitation was then shown to eliminate the ellipticity
problem, provided that the launch conditions were reasonably favourable, and with minimized
initial phase shift between the excitation and the response. Parametric excitation was also seen to
be capable of compensating for, and removing, moderate levels of initial ‘bob-wobble’ and long-
axis torsion, but this was a somewhat subjective observation and more work remains to be done
to quantify this aspect. A video of the parametrically excited pendulum operating from 15 min
after launch is available as electronic supplementary material file ESM4 and shows the pendulum
swinging without any observable ellipticity at all, but still with the modulating phase shift effect
alluded to earlier.

5. Experimental results

(a) Transient response case
The transient test data are shown in table 2, measured for the initial condition when the pendulum
was launched by hand along the north–south (local y) axis and then measured again at exactly
15 min later, and A and B were calculated using equations (4.2) and (4.3). The coordinate system
is as shown in figure 14, and the aggregated accuracy of the measurements is ±1 mm.

By means of similar triangles, it can easily be shown that the y coordinate of the cross-over
point of the swing at x = 0 is 443 ± 1 mm. This is the point when the second set of measurements
were taken at t = 900 s. Simple trigonometry can then be used to show that the shallow
re-orientation angle γ was 11.2° at that moment in time, as stated in table 2. If we then numerically
solve equations (2.1) and (2.2) having removed the parametric excitation, for the experimental
data, the predicted precession due to Earth rotation for the data of the unforced experimental
pendulum over a time period of 900 s is 3.12°. From this experiment, it is obvious that the
response of the unforced experimental pendulum was significantly different from the prediction
of the mathematical model, with the re-orientation angle being notably larger than the angle of
the predicted precession. This indicates that the natural precession due to Earth rotation was
overwhelmed by the inherent ellipticity effects which predominate in the unforced experimental
system. Table 2 also shows that B is substantially less than A for the unforced case, but it was
quite clear from observation that this was due both to the naturally reducing amplitude over the
duration of the transient response as well as being a consequence of the observable ellipticity that
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Table 2. Measurements taken from the transient test.

initial conditions, at launch, t= 0 after 15 min (t= 900 s)

x1 = 385 mm x3 = 354 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x2 = 385 mm x4 = 434 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1 = 730 mm y3 = 600 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y2 = 50 mm y4 = 195 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 340 mm B= 206 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ = 0° γ = 11.2°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. Measurements taken from the parametrically excited test.

initial conditions, at launch, t= 0 after 4 h (t= 14 400 s)

x1 = 385 mm x3 = 14 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x2 = 385 mm x4 = 756 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1 = 730 mm y3 = 761 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y2 = 50 mm y4 = 19 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 340 mm B= 525 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α0 = 0° αtend = 45°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

developed over the time of the experiment. On that basis, any transient test of a pendulum of this
construction will necessarily give results emanating from both phenomena combined and so the
utility of an unforced pendulum design for any form of accurate measurement is questionable.

(b) Parametrically excited case
The parametrically excited test data are given in table 3, measured once more for the initial
condition at which the pendulum was carefully hand launched exactly along the north–south
(local y) axis and then measured again 4 h (14 400 s) later, and A and B were again calculated
by means of equations (4.2) and (4.3). The coordinate system is as shown in figure 14, and
the aggregated accuracy of the measurements is ±1 mm. There was no discernible ellipticity
measured by means of the laser system over the 4 h during which the parametrically excited
pendulum was monitored, and so the ellipse re-orientation angle γ was undefined when
the pendulum was parametrically excited. The modulating phase shift was seen to continue
for well over an hour into the run, after which the system gradually settled into a proper
steady-state response for which the peak amplitude was defined by B and measured to be
525 mm, noting that this response was bounded principally by the effect of the nonlinear
restoring force. The measured pendulum precession was 45 ± 1° during the run time, and
this compared well with the theoretically predicted precession for the parametrically excited
experimental pendulum of 46.49° found using the numerical simulation based on equations
(2.1) and (2.2). This experiment suggests that a parametrically excited Foucault pendulum could
be used for the accurate long-term measurement of rotation of the Earth, and furthermore
that the inherent problems that traditionally plague Foucault pendulums, of ellipticity, internal
and aerodynamic damping, phase shift modulation, and the variability of launch conditions
can all be successfully mitigated if the parametric excitation is carefully and accurately
implemented.
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6. Discussion
A mathematical model of the dynamics of the Foucault pendulum has been presented which
includes aerodynamic damping with turbulent air flow, parametric excitation of the length,
and coupling with pure torsional motion along the long axis. A numerical exploration of the
pendulum was undertaken for a range of different parameter values, including different locations.
Obvious limitations in numerical accuracy were found for extended integration times, and for the
system investigated here it was shown that an integration time of anything much above 3600 s
would inevitably lead to an inaccurate solution. Most of the limitations discussed in detail by
Pippard [12] were noted in detail and observed, including the presence or otherwise of the mass
of the pendulum wire (neglected here but relatively simple to include in the next design iteration),
and the need to adhere, if possible, to the creep criterion of [12], in the form of equation (4.1).
Importantly, for the data used here, the parametric excitation was seen to amplify the theoretically
predicted response of the system significantly but not to affect the precession (as also shown in
[12]), and to maintain the accurate operation of the pendulum over time and against the damping
as modelled. Possible coupling to long-axis torsional vibration was explored theoretically for two
different wire diameters and it was found to be unlikely that this could be excited in any persistent
manner in practice.

An experimental system was designed in an attempt to eliminate many of the known inherent
problems of the Foucault pendulum, starting with the use of a modern high-quality spherical
rotating joint at the support, stiff wire of high quality (both 97% tungsten and tempered steel),
and a cylindrical tungsten bob. This close attention to good design principles did not, when
under test, remove the well-reported tendency for the unforced Foucault pendulum to display
anharmonicity and elliptical motion over time. In mitigation, the design also included a form of
parametric length excitation by means of a linear drive actuator at the support, driven by software
running on a remote controlling computer. The length excitation was set up to provide sufficient
amplitude drive at a controllable frequency in the region of twice the linear natural frequency
of free damped vibration of the pendulum to drive it into principal parametric resonance.
The intentions behind this have already been discussed and parametric excitation was found
largely to work well in practice, notwithstanding low-frequency phase modulation effects which
eventually damped out but were also found to be significantly reduced much more quickly by
means of a carefully executed launch procedure. Laser instrumentation was set up to monitor
the response of the pendulum for both unforced motion (under which it responded purely to an
initial displacement condition) and the parametric excitation. It is clear that with care a reliable
medium length Foucault pendulum with parametric excitation can be built in the laboratory
for the measurement of the Newtonian rotation of the Earth, but it is also very obvious that
to do this really accurately will undoubtedly require some important additions to the design,
inevitably to include an electromagnetic pusher drive [1,6,7,13,14,17] and a carefully constructed
surround to remove air currents, possibly made of Plexiglass and the situation of the pendulum
in a seismically quiet environment which is also well away from electromagnetic compatibility
(EMC) effects and large ferrous objects. All the findings of the experimental research reported
in this paper, and more, would need to be implemented in full if the Foucault pendulum is to
be considered as an instrument that could be developed for the more stringent measurements of
motions due to general relativity, of which terrestrial measurement of LT precession could be a
compelling goal. This possibility has been considered by many, notably [8,10,11,12] and although
realization of this is still not close, it is a credible and exciting motivation to consider at the present
time. Pippard [12] was not optimistic that it would ever be achievable, whereas Braginsky et al. [8]
provided a highly detailed specification for achieving terrestrial measurement of LT admittedly
based on hugely precise instrumentation, and it is interesting to note that this could now be
far more practically attainable than it was when Braginsky et al. first proposed it 35 years ago.
Pascual-Sánchez [10] and Iorio [11] have also offered encouraging grounds for optimism in their
authoritative takes on using highly accurate Foucault pendulum systems for the measurement of
LT precession on Earth.
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In order to extend the investigation made by Pippard [12] into terrestrial LT measurement,
a further analysis into this quantity has recently been completed by Cartmell [27] based on
the analogy between Maxwellian electrodynamics and gravitomagnetism, and formulated in
notation that is reasonably consistent with the literature. An equation for LT precession at any
terrestrial location was derived in [27] as follows:

ΩLT = 0.6632GMΩ⊕
c2R

cos θ , (6.1)

where ΩLT is the LT precession, usually conveniently converted to milliarcseconds per year,
G is Newton’s universal gravitational constant and taken as 6.67408 × 10−11 m3 kg–1 s–2, M
is the mass of the Earth at 5.972 × 1024 kg, Ω⊕ is the angular rate of the Earth and equal to
7.2921150 × 10−5 rad s–1, c is the velocity of light which is 2.99792488 × 108 m s−1, R is the radius
of the Earth which varies with location, and can be taken as 6356 × 103 m at the North Pole and,
for example, 6363.18 × 103 m at Glasgow in Scotland (and which strictly speaking includes the
elevation above the ground of the pendulum bob), φ is the latitude of the location, and this is
1.5707963 rad at the North Pole and 0.9750 rad at Glasgow. Note that in equation (6.1), we give the
LT precession as a function of colatitude θ , where θ = (π/2) − φ, and φ is the latitude as measured
from the equator. The other point to mention is that the constant value of 0.6632 accommodates
the true radius of gyration of the Earth. Pippard [12] does not explicitly provide an equivalent
formula to equation (6.1) but states that the LT precession can be shown to be 220 mas yr−1

at the North Pole. Ruggiero & Tartaglia [28] state that the LT precession at the North Pole is
281 mas yr−1. Using equation (6.1) and the above data ΩLT is calculated to be 219.5 mas yr−1 at
the North Pole, a result virtually identical to Pippard’s value. By changing both the latitude and
the radius of the Earth at the North Pole to the respective values for the location of Glasgow then
the LT precession there can be calculated from equation (6.1) to be 181.5 mas yr−1. This is 82.5%
of the value of the LT precession available at the North Pole so one might envisage attempting
to measure LT at a quiet Scottish location as a significantly cheaper, yet still potentially feasible
alternative to doing it at the Pole itself.

7. Conclusion
1. A nonlinear mathematical model has been derived for the Foucault pendulum for

any terrestrial location, accommodating nonlinear aerodynamic damping, parametric
excitation of the length and coupling to pure torsional motion about the long axis of the
pendulum. It has been shown both theoretically and experimentally that the parametric
excitation can overcome the natural decay in the amplitude due to damping and therefore
maintain the response of the pendulum at a constant level over time, and furthermore that
the response amplitude can be significantly amplified to a relatively large steady-state
value.

2. The potential for pure torsional motion of the pendulum about the long axis has been
explored for two different wire types, materials and diameters, and for a physically
realistic level and also an unrealistically high level of excitation through torque transfer
due to support joint friction, but it has been shown that there is little likelihood of this
motion being incited in practice.

3. A numerical study of the Newtonian precession of a candidate pendulum of nominal
length 8 m and a peak parametric excitation amplitude of 75 mm was undertaken for
11 different geographical locations from the North Pole down to the equator and on
to the South Pole, calculated for 4 h numerical integrations, and then the precessions
were extrapolated for 24 h at each location. These results showed, with reasonable
approximation, that the pendulum responds proportionally to the Newtonian rotation
of the Earth at each location.

4. A further numerical investigation for different nominal pendulum lengths, with the peak
parametric excitation amplitude maintained at 0.005, 0.0075 and then 0.01 of the nominal
length, revealed that there is a definite upper limit on the acceptable integration time
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for reliable results. For the data examined, the safe upper limit to the integration time
was found to be restricted to 3600 s or below. It should be noted that this is a specific
result for the data used here and that further work remains to be done to generalize this
properly, preferably through a comprehensive non-dimensionalization strategy. This will
be undertaken in the next phase of the research, along with a perturbation analysis using
the method of multiple scales.

5. A parametrically excited experimental pendulum was constructed in the laboratory
and several tests were performed using a monitoring system based on calibrated
laser instrumentation. The nominal length of the pendulum was 4685.5 mm and the
peak amplitude of the parametric excitation was 50 mm, thereby slightly exceeding
1% of the nominal length, and maintaining that relationship (as applied previously
in the numerical analyses). The frequency of the parametric excitation applied to the
experimental pendulum was set at exactly twice the measured damped natural frequency
of free vibration, 0.2366 Hz, in order to stimulate principal parametric resonance.

6. When parametrically excited, and launched carefully from a known initial displacement
(zero initial velocity), the pendulum eventually settled into a steady state in the long
term. Well-known problems such as ellipticity due to anisotropy, phase modulation,
possible forms of Pippard precession and extraneous motions due to imperfect
launch (bob-wobble etc.) all disappeared once an observable steady state due to the
parametric resonance took over. A confirmatory video of the parametrically resonant
pendulum operating steadily 15 min after launch has been made available as electronic
supplementary material. The mathematical model predicted the Newtonian precession
for the parametrically excited pendulum to within 5%, over 4 h, notwithstanding the
limitations of the numerical integration routine when the equations of motion were
solved for longer integration times.

7. The experimental pendulum was also tested for zero parametric excitation, therefore
with its response simply due to an initial displacement condition, and for all such
free transient cases investigated, performance was seen to deteriorate quite quickly,
with ellipticity predominating and the major axis persistently rotating away from the
initial launch plane through a shallow re-orientation angle. Although this performance
was clearly very poor, the amplifying and pervasively corrective influence of the
parametric excitation, when it is actuated, means that all future developments should
inevitably use that form of excitation as standard, and possibly with more than one
simultaneous resonance condition, merely rendering the free pendulum as a curiosity.
It would also be advantageous to combine parametric excitation with the use of an
electromagnetic pusher coil and to surround the pendulum with an enclosure to remove
the unpredictable damping effects of stray air currents which potentially intruded in
the experiment discussed here, in order to optimize its performance for measuring
Newtonian precession.

8. An application for the Foucault pendulum as an instrument potentially capable of sensing
and measuring the gravitational LT precession has also been considered. This study was
motivated by earlier work [8,10,11,12] and an expression for terrestrial LT previously
obtained by one of the authors [27] was used to calculate this quantity for locations
at Glasgow, Scotland and at the North Pole, with figures comparing very favourably
with predictions for LT at the North Pole made by the authors in [8,10,11,12]. It is
suggested that an experimental design for the construction of a Foucault pendulum
capable of making such a sensitive measurement could be conjectured anew, possibly
with slightly more confidence than in the past. However, one cannot downplay the
extreme performance improvement that will be needed. As a point of comparison, if we
calculate the Newtonian precession of the Earth measured over 1 year at the North Pole,
this amounts to 131 400°, which equates to 473 × 109 mas yr−1, which compares with 220
mas yr−1 for LT according to [12,27]. This suggests an increase in resolution capability
of 2.15 × 109. Similarly, if we compute the annual Newtonian precession of the Earth at
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Glasgow, Scotland, this comes to 110 230°, which is 396.8 × 109 mas yr−1 (extrapolated
from column 7 in table 1). The LT precession accumulation for Glasgow, Scotland,
is calculated to be 181.5 mas yr−1 [27], and so the increase in resolution capability
for that location is 2.18 × 109. The relatively small difference between the resolution
magnifications at the two locations can mainly be put down to the extrapolation
employed to calculate the 24 h precessions shown in column 7 of table 1. The message
is clear, we would require an increase in resolution capability of at least 2 × 109 to obtain
a reliable terrestrial detection of LT precession using a Foucault pendulum. This accords
almost exactly with the predictions of [10,12]. In order to do this successfully, it would
be necessary to use an alternative measurement to be able to remove the Newtonian
precession, to exploit amplifying resonance conditions in a long pendulum running over
a period of at least 3 years to resolve the measurement accurately over time and to site the
experiment at a remote northerly (or southerly) location, in an environmentally protected
EMC-free enclosure.

9. While careful design using modern technological solutions such as the spherical rotating
joint and materials of exceptional quality will help passively to reduce the problems
traditionally associated with Foucault pendulum systems, it remains imperative also to
follow the detailed guidance in the literature, much of which has been examined in the
preparation of this paper, [1,3,6–8,10–13,17,28] in order to attempt a successful terrestrial
detection of LT precession.
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